Lecture 6 Summary
Phys 402

Having defined the total angular momentum of the Hydrogen atom J=L+Swe
now wish to find the possible values for the quantum number j and write down expressions
for eigenfunctions of J? and J,. All of this was precipitated by the need to handle the spin-

orbit perturbing Hamiltonian, which is proportional to S e L = %(J S A )

If J=L+S and J?has eigenvalue j(j+1)4>, L*has eigenvalue ¢(¢+1)4*, and
S? has eigenvalue s(s +1)i°, then one might naively think that j = ¢ +s. However this

is not the whole story. Remember that both L and S have ladders of states associated with
the £ and s eigenvalues. Hence we need to find a way to combine different ladders of
states.

If we apply J, to a souped-up Hydrogen atom product wave function which now

includes spin, v, ,, ., (r,0,4) < R, (r)Y," (0, ¢)|s ms>, where the spinor is denoted with
the ket |s ms> (s = 1/2 for the electron), the result is:

le//n,é,m/,s,m, = mjhl//n,k',mﬁ ,S,mg 2 and

le//n,/:,m,,s,ms = (Lz + Sz )y/n,/,,m,,s,ms
The L_operator sees only the spherical harmonic, while the S operator sees only the
spinor ket. The result is:

SV imsm = (m, i+ msh)a//n’é‘mhs’m\ , leading to the conclusion that

m;=m,+m,

However, if we operate with J”on this same Hydrogen atom wavefunction, the
results are not so pretty. From the definition of J=L+S , we know that

J>=I1*+S?+2L S (notethat I andS commute with each other), and the L ¢ S
operator can be expressed as:

2Le5=2(L,S,+L,S, +L.5.)
=2L S +LS +LS,.
using our old friends the raising and lowering operators. .J*can now be written as:
JP=L+S*+2L.S. +L.S_+L_S,
Now consider applying this operator to a hydrogen atom product wavefunction of the form

l//n,é,m,,s,ms (7", 05 ¢) = Rnl‘ (r)Y/m} (9’ ¢)

%%> for example (i.e. with a “spin up” electron):
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where we have used results from Eq. [4.121] and Eq. [4.136] on page 166 of Griffiths.
Note that this is no longer an eigen-equation because the raising and lowering operators
have changed the m, and m_ values in the second term on the RHS. Apparently the

3 hi
JZV/n,z,m,,l/z,l/z = {ﬁ(ﬁ + l)h2 + th + 2m/,h_:|vln,[,m,,l/2,l/2 + hh\/(ﬁ —m, )(£ +m, + 1)Wn,é,m,:+l,l/2,—l/2



eigenfunctions of J*are linear combinations of Hydrogen atom product wavefunctions
Yot sm (7> 0,8) with different values of m,and m_. This is consistent with the statement

we made in the last lecture that the LeS operator mixes together different unperturbed
Hydrogen atom states.

The eigenfunctions of J*can be expressed as linear combinations of states with
different values of m, and m_ using the world-famous Clebsch-Gordan coefficients

ls .
(C,, "] w)as:

|] mj) — Z C{’ S

j
m; mg m,-lf’ m£’>|5 ms)

myp and mg such that
mp+ ms=m;

where the ket |€ m€>represents the spherical harmonics Y, . The C-G coefficient values

are given in Table 4.8 on page 179 of Griffiths. Remember that all of the coefficients
should appear under a square root, with the minus sign (if any) out front. Also note that
we have dropped the radial part of the wavefunction (R,, ) because it plays no role in

combining angular momenta. Don’t forget to put it back later.

Where do these CG coefficients come from? Consider starting with a product
wavefunction at the top of the m; ladder (it is a product of the wavefunctions with
maximum values of m,andm, ). Now apply the J_ = L_ + S_ lowering operator, and

construct orthonormal states on lower rungs of the ladder. The coefficients on the terms
of those wavefunctions are the C-G coefficients.

We did a specific example of a hydrogen atom with / =1land spin s =1/2. In this
case the angular momentum vector and spin vector can either be “parallel” or “anti-parallel.”
Consider the two cases:

1) “Parallel” L and S : The maximum value of m, 1s +1, while the value of m_is
+1/2 for the “parallel” case. This means thatm, =m, + m, =3/2. This is the state at the
top of the ladder. There must also be states with m ;=+1/2,-1/2,-3/2. This is a set of

4 states on the ladder of j =3/2. Thus the eigenvalues of J° for this ladder must be

%(%+l)h2 = 175 h* . Note that <Z O§> >0 in this case, giving a positive spin-orbit

Hamiltonian perturbation.

2) “Anti-Parallel” L and S : The maximum value of m , 1s +1, while the value of m_
is -1/2 for the “anti-parallel” case. This means thatm, =m, + m, =1/2. This is the state
at the top of the ladder. There must also be a state withm, =—1/2. This is a set of 2 states

on the ladder of j=1/2 . Thus the eigenvalues of J’ for this ladder must be
%(%+1)h2 :%h2 . Note that <ZO§><O in this case, giving a negative spin-orbit

Hamiltonian perturbation.



There are a total of 6 states possible by simply combining the orbital angular
momentum with / =1and spin angular momentum with s =1/2 ! Just imagine what
happens when you combine 3 or more angular momentum vectors!

Now for an example of how to construct states that are simultaneous eigenfunctions

of I’, S*, J* andJ_. Take the case again of hydrogen with ¢ = 1and spin s =1/2. How
do we find the state with j =3/2and m; = —1/2 in terms of the ¥," and spinors? Look at

the lx%CG Table on page 188. We are led to this table because we are combining an

angular momentum vector with / =1and spin vector withs =1/2. Now look under the

1
ms
my+my=—1/2

-3 Bl - -

This can be written in a more familiar way in terms of spherical harmonics and

spinors as:
3 1 2 1
(flz -2)= j; Y(0,9) x- +f§ Y6, ) X+

where the spinors are being written as y; = | % + %>

One can move back and forth between the coupled and un-coupled representations
using the Clebsch-Gordan table on page 179. Here is the schematic layout for the CG table

column labeled “ “. It says:
1/2

% _l> = ZC;/ l/rf A |1 m€>
3

for combining two spins (called S,, S, ) to form a total spin S = S, + S, (S has eigenvalue
1 2 1 2
s(s+1DR%):
General Schematic of the C-G Table
§=5 +8,
Coupled
S | X S 5 S Representation

mS

m, m_  CGH#
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Un-Coupled
Representation


https://www.physics.umd.edu/courses/Phys402/AnlageFall17/Clebsch-Gordan%20Example%20with%20l=1%20and%20s=one%20half.pdf

